
AD-A233 698

TRANSFORMATION OF PROPOSITIONAL CALCULUS

STATEMENTS INTO INTEGER AND MIXED INTEGER PROGRAMS:

AN APPROACH TOWARDS AUTOMATIC REFORMULATION

E Hadjiconstantinou

Imperial College, London

and

G Mitra

Brunel University, Uxbridge, Middlesex

The research work reported in this document was supported by the U.S. Army's
European Research Office, London

Contract No DAJA4S-87-C-003/USARDSG(UK)

9__1 7

CONTENTS

0. ABSTRACT

1. INTRODUCTION

2. PREVIOUS WORK

2.1 First-Order Logic, Symbolic and Quantative Methods.

2.2 A Quantitative Approach: Efficient Formulation and Solution
Procedures.

2.3 Logic Programming, Artificial Intelligence: The Common
Problems.

3. REPRESENTATION IN PROPOSITIONAL LOGIC
AND 0-1 DISCRETE PROGRAMMING

3.1 Basic concepts and notations in propositional logic.

3.2 Reductions in Normal Forms.

3.3 Logic Forms represented by 0-1 variables and Linear (In)
equalities.

4. A SYSTEMATIC PROCEDURE FOR REFORMULATION

5. ILLUSTRATIVE EXAMPLES

5.1 Example 1: [WILLMS87].

5.2 Example 2: Crossword Compilation [WILSON89].

6. IMPLEMENTATION WITHIN AN LP MODELLING SYSTEM

7. DISCUSSION AND CONCLUSIONS

8. REFERENCES

0. ABSTRACT

A systematic procedure for transforming a set of logical statements or logical
conditions imposed on a model into an Integer Linear Progamming (ILP)
formulation or a Mixed Integer Programming (MIP) respectively is presented.
An ILP stated as a system of linear constraints involving integer variables and
an objective function, provides a powerful representation of decision problems
through a tightly interrelated closed system of choices. It supports direct
representation of logical (Boolean or propositional calculus) expressions.
Binary variables (hereafter called logical variables) are first introduced and
methods of logically connecting these to other variables are then presented.
Simple constraints can be combined to construct logical relationships; the
methods of formulating these are also discussed. These reformulation
procedures are illustrated by two examples. A scheme of implementation
within an LP modelling system is outlined.

NT.S

U. v;: '

I, "
--- I---- -- -

A -1,

INTRODUCTION

In recent times first order logic in the form of propositional or predicate
calculus has taken a central position in the formulation and solution of
problems taken from diverse domains such as management science models,
artificial (AI) intelligence, database applications, and programming languages.
In AI for instance, not only automatic theorem proving via instantiation and
resolution is a leading topic of interest; the simplest form of knowledge
representation via production niles and diagnostic expert Sycms, which
provide explanation through chairing procedures, also have many applications.
All of these depend heavily on the underlying logic representation and the
related computational issue of making deductive inference.

Thus central to these applications is the problem of logical inference which is
the problem of determining if a particular conclusion in propositional logic
follows from certain premises. The generally accepted type of inference
procedure, symbolic (as opposed to numeric) calculation has failed to solve
large inference problems. Even with the help of faster and larger computers
emerging, logicians can only work with problems of limited size.
Consequently, over recent years, an alternative emphasis has been under
investigation for new and faster techniques in order to deal with problems that
are formulated in propositional or predicate logic. The current trend for
applying quantitative methods generally, and the methods of mathematical
programming in particular, to problems in propositional logic can be explained
by highlighting the three underlying reasons set out below:

(i) An "intelligent" mathematical programming system is highly structured;
such a system can be used to exploit the high degree of mathematical
structure inherent in propositional logic. This enables the development of
modelling procedures where by statements in propositional logic can be
represented as discrete optimization problems involving 0-1 integer, and 0-1
integer as well as continuous variables; that is, integer programmes (IP) and
mixed integer programmes (MIP).

(ii) Close parallels exist between some important concepts of propositional
logic and mathematical programming which can lead to better methods, both
quantitative and symbolic, for solving logical problems more efficiently.
Furthermore, the results of this research can also be applied to solve various
types of optimization problems in the area of mathematical programming.

(iii) It is well known that inference is a very hard combinatorial problem. If
a knowledge base is encoded in the simplest sort of logical language
(Propositional Calculus), then the inference problem cannot be solved in better
than "exponential" time. The situation is even worse when the data are
expressed in first-order predicate logic. However, it has been proved that
inference involving Horn clauses can be accomplished in linear time (Dowling
and Gallier [DOWGLR84]), using a class of resolution techniques. The
special structure of mathematical programming methods, which can be
potentially very fast, can then be exploited to provide a more robust approach

towards representing and solving problems considered by AI and expert
systems (it is usually possible to solve large IP models in a reasonable period
of time if they have a special structure).

The focus of this paper is to develop a systematic approach for transforming
statements in propositional logic into integer or mixed integer programmes.
This method is particularly suitable as a modelling technique which then
allows one to automate the conversion to an IP or MIP model. The final goal
is to integrate this modelling function into an "intelligent" mathematical
programming modelling support system. The rest of the paper is organized in
the following way. In section 2 the background and motivations of earlier
work in this field are set out. Section 3 contains a summary description of the
important results in propositional logic and the corresponding 0-1 discrete
programming equivalent forms. In section 4 these reformulation techniques
are used in a progressive sequence and a systematic reformulation procedure
is enunciated. Illustrative examples and implementation issues within an LP
modelling system are considered in sections 5 and 6 respectively.

2. PREVIOUS WORK

2.1 First-Order Logic, Symbolic and Quantitative Methods

Symbolic, as opposed to numeric, calculation is the mathematical manipulation
of symbols. In the domain of logic it was adapted by Boole who devised a
real workable system (he used 0 and 1 for truth values and arithmetic symbols
for logical operations) - which is now well known as the Boolean Algebra.
Today, problems in Al rely heavily on symbolic manipulation. The popular
resolution method for inference [ROBINS65] is designed for first-order
predicate logic. Resolution applied to propositional logic is called ground
resolution and is part of Quine's algorithm [QUINEW55]. The difficulty of
the resolution algorithm is that it has recently been shown to have exponential
complexity and to become rapidly impractical as the problem increases in size
[HOOKER90]. Due to the inability of traditional inference methods to deal
with large knowledge bases, most of the recent work in this area has been
directed toward automated theorem proving, which involves relatively small
knowledge bases. Hooker [HOOKER88] surveys the application of
quantitative methods, and integer programming methods in particular as
applied to inference problems in propositional logic. Williams
[WILLMS77,WILLMS85], has shown how such problems could be modelled
as equations or inequalities involving 0-1 integer variables. That verification
or refutation of an argument could be modelled as a maximization or
minimization of an objective function in these variables leading to an Integer
Programme (IP) is also shown in this paper.

2.2 A Quantitative Approach: Efficient Formulation and Solution
Procedures

Statements in propositional calculus can be modelled as integer programmes
in different ways: thus a given compound proposition may have more than

one representation. It is, however, well known that from a computational
point of view one of these representations is superior to the others
['WVILLMS87].

One obvious method of reformulation is to express a compound proposition
into a Conjunctive Normal Form (CNF) and then convert it into integer
programming constraints [BLARJL88] [WILSON90]. This is a cumbersome
approach as it requires more than one constraint to represent a compound
proposition. In general, a number of CNFs are possible and there is no
guarantee that a unique representation is obtained.

Williams argues that when using IP algorithms based on LP relaxations for
solving problems in propositional calculus, it is desirable to "disaggregate" the
constraints so that the LP relaxation is as close to the convex hull of feasible
integer solutions as possible (that is, tight LP relaxation are created). Taking
into consideration the geometry of the convex hull Jeroslow FJEROSL85]
deduced that it is generally better to express a model in the Disjunctive
Normal Form (DNF) before converting it to a representation in linear
inequalities in terms of 0-1 variables. Blair, Jeroslow and Lowe [BLARJL85]
were apparently the first to solve non-trivial inference problems with
mathematical programming methods. They examined the connections and
parallels between propositional logic and integer programming and how these
can be combined to create new inference methods.

It is well known that most successful IP algorithms are based on "Branch and
Bound" or "Cutting-Plane" techniques or some combination of the two. Blair,
Jeroslow and Lowe showed that a branch-and-bound approach not only solves
satisfiability problems quickly, but it is closely related to a variant of the well
known Davis-Putnam procedure in logic. Later, Jeroslow and Wang
[JERWAN87] replaced the LP in the branch-and-bound method by a variable
fixing heuristic and obtained a symbolic method even faster than
branch-and-bound. Beaumont [BEAUMN87] approaches the computational
issue from the other direction. He first converts a MIP model into a DNF
and then solves the resulting model by an algorithm based on a
branch-and-bound procedure.

A well known class of inference problems, those involving Horn clauses,
define IPs whose duals have integral polytopes and that exhibit a dynamic
programming structure (Jeroslow and Wang [JERWAN89]). Roehrig
[ROEHRG88] considered problems in propositional logic and suggested the
use of a variant of an effective IP heuristic to achieve fast inference. His
technique proved to be computationally more efficient compared to the
traditional symbolic methods. The resolution method for solving inference is
related to a cutting plane method for solving IPs and resolution can be
dramatically accelerated by treating resolvents as cutting planes.

2.3 Logic Programming, Artificial Intelligence: The Common Problems

The growth in Al based wider modelling techniques can be traced back to
development of inference procedures and computational logic: thus
developments in natural language understanding, theorem proving and rule
based expert systems utilize the computational underpinning of first order
logic.

Rule based expert systems

The simplest yet the most successful examples of expert systems use
production rule based knowledge representation. These are usually set out in
the well known propositional logic forms (see section 3) and are called rules.
These rules and especially their statements are often exploited through the
explanations procedure. The end user of the ES application is given a
meaningful reasoning as to how a deduction was made [BSHORT84]. The
proposal that set covering IP models and their variation are used to provide
explanation in diagnostic expert systems has been put forward by Yager
[YAGERR85] and Reggia et al [REGNWN83].

Constraint satisfaction and planning

AI planning and reasoning with time is a specialist area of study where the
applications of logic is extended to the time domain. AI planning is
concerned with the selection and sequencing of actions which achieve a set of
desirable goals: the main domains of its application are job shop scheduling,
production planning, maintenance scheduling, Steel [STEELS87] as well as
Allen [ALLENJ83] discuss the application of logic in these deductive systems.

Games, Puzzles and Combinatorial Programming

Mathematical puzzles and games provide a rich source of application of Al
and logic. Crossword compilation Berghel [BERGHL87], cryptarithm and
"Smith-Jones-Robinson" problem of recreational logic [GARDNR61] are
typical examples which are well suited for solution through logic. A wide
range of combinatorial problems can also be cast in this paradigm and
Laurier's research focus [LARIER78] was indeed to unify the description and
solution of these problems.

Constraint Logic Programming

Constraint logic programming, also known as constraint programming
systems (CPS), are in essence programming paradigms which seek to satisfy
arithmetic constraints within an otherwise logic programming framework
The motivations, methodologies and their scope of application are well
discussed by Hentenryck [HENTRK96] and Chinneck et al [BCHNKM89].
When the constraints (usually linear) involve expressions in real numbers
naturally the simplex algorithm is applied to achieve constraint satisfaction;
Lassez CLP(R) [LASSEC87] and Colmerauer [COLMRA87] PROLOG III are

two such CPS. For constraints stated in discrete integers (natural numbers)
tree search method or interval arithmetic is applied to achieve constraint
satisfaction. Hertenryck [HENTRK89] CHIP and Brown and Chinneck
[BNPRLG88] BNR-PROLOG report two systems of this type.

3. REPRESENTATION IN PROPOSITIONAL LOGIC AND 0-1 DISCRETE
PROGRAMMING

3.1 Basic concepts and notations in propositional logic

A "statement" defines a declarative sentence. For example, "Athens is the
capital of Greece" and "Five is an even number" are statements. This type of
statement, about which it is possible to say that it is either true or false, but
not both, is called a simple or individual or atomic proposition, (propositions
and statements are ,ynonymous words). A proposition can take one of the
truth values true or false, that is the truth value of a true proposition is
TRUE (abbreviate to T) and the truth value of a false proposition is FALSE
(abbreviate to F). As no other value is permitted, the calculus of propositions
is referred to a two-valued logic.

Propositional calculus enables compound propositions to be formed by
modifying a simple proposition with the word "not" or by connecting
propositions with the words "and", "or", "if... then" (or implies) and "if and
only if". These five words are called propositional or logical connectives and
they ae known as the negation, conjunction, disjunction, implication and
equivalence, respectively. By repeatedly applying the connectives, the
compound propositions can be used in turn to create further compound
propositions. The symbolic representation of these connectives and their
interpretation are shown in Table 1.

There are two meanings of the disjunction connective: the inclusive or
meaning that at least one disjunct is true (allowing for the possibility that
both disjuncts hold) and the exclusive or which is true if exactly one disjunct
is true but not both. The latter operation is also known as "non-equivalence".
Using the implication connective, a compound proposition has the form "if ...
then ... ", the proposition following "if" is the antecedent and the proposition
following "then" is the consequent. Thus, the antecedent "implies" the
consequent.

It is convenient to represent arithmetic variables by small letters x, y, z, etc.,
and propositions by capital letters from the middle part of the alphabet, P, Q,
etc. Thus, P, Q, ... are used to represent

(i) actions, options or ves/no decisions (that is, atomic propositions). For
example, P: "product is manufactured".

(ii) linear restrictions, that is, (in)equalities involving LP (or IP) variables.
For example, Q: "3x + 4y < z"

No Name of Symbol Meaning of Other common words
connective connective

1 negation - P not P

2 conjunction PAQ P and Q Both P and Q

3 inclusive P V Q P or Q Either P or Q/at least one of
disjunction P or Q

4 non-equivalence P z Q P xor Q Exactly one of P or Q is true
(exclusive (P V Q)
disjunction)

5 implication P -, Q if P then Q P implies Q... P is a sufficient

condition for Q

6 equivalence P -* Q P if and P if Q...P necessary and
(P =- Q) only if Q sufficient condition for Q

7 joint denial -(P V Q) P nor Q Neither P nor Q/None of P or
Q is true

8 non-conjunction -(P A Q) P and Q

TABLE 1: Propositional Connectives

(iii) compound propositions.

Lt P, Q, R and S rcp:csent the --to p o.L,-1.c propositions

P: "It is raining today"

Q: "Today is clear"

R: "Yesterday was cloudy"

The following compound propositions can then be constructed:

-P : "It is not raining today"

Q v P "Today is clear or today is raining"

P -. R "If and only if, yesterday was cloudy today it is raining"

Q v (R -- P) "Either today is clear or if yesterday was cloudy then it
is raining today"

-R A Q "Yesterday was not cloudy and today is clear"

To avoid an excess of parentheses in writing compound propositions in
symbolic form, the above connectives are considered to be binding in the
conventional order of precedence: negation "-", conjunction "A", disjunctions
"v, v, implication "-." and equivalence ".-". For example, R A S -. P means
(R A S) - P and -R A Q means (-R) A Q.

For any assignment of truth values T or F to atomic propositions, depending
upon the connectives used, the truth value of a compound proposition can be
computed in a mechanical way by means of truth tables.

The truth values of six compound propositions, defined in terms of the truth
values of propositions P and Q, for the main propositional connectives
described earlier, are shown below in Table 2.

P Q -P PAQ I\'Q PQ P-Q p-=Q

1 1 0 1 1 0 1 1

1 0 0 0 1 1 0 0

0 1 1 0 1 1 1 0

0 0 1 (0 0 0 1 1

TABLE 2: Definition of Connectives

3.2 Reductions to Normal Forms

It is possible to define all propositional connectives in terms of a subset of
them. For example, they can all be defined in terms of the set (A,V,-) SO that
a given expression can be converted into a "normal form". Such a subset is
known as a complete set of connectives. This is accomplished by replacing a
certain expression by another "equivalent" expression involving other
connectives. Two expressions are said to be "equivalent" if. and only if, their
truth values are the same, and this is expressed as P.-,Q, that is P is equivalent
to Q.

For example, P-.Q--PVQ, --P=-P, -(PvQ)-PAQ, -(PAQ)=-~PvQ are laws of
propositional logic (the latter two are called the De Morgan Laws). The
following two are called Distributive Laws:

Pv(QAR)-(PvQ) A (PvR)
PA(QvR)-(PAQ) v (PAR)

In the first law, "\/' distributes across "A", while in the second law "A"

distributes across "v".

By De Morgan's laws, conjunction can always be expressed in terms of
negation and disjunctioii. First use De Morgan laws to get negations against
atomic propositions, and then recursively distribute "v" over "A" where it
applies. This transforms a general compound proposition R to an equivalent
proposition of the form RlAR2 A...Rn in which every R i , i=l, ..., n is a
disjunction of atomic propositions. The logical form RI^R2 A...Rn is called a
Conjunctive Normal Form (CNF) for R and the Ri are clauses of the CNF.
For example, -PA(QvR)-.(SvT) becomes (Pv-QvSvT) A (Pv-RvSvT).

The second distributive law can be used to transform R to an equivalent
proposition of the form SlvS2v...Sm in which each SJ,j=l m is a
conjunction of atomic propositions or their negation. In this case SlvS2V...Sm
is called a Disjunctive Normal Form (DNF). In both normal forms, negation
is only applied to atomic propositions. All conjunctions may be removed
leaving an expression entirely in "-" and "V". Similarly, all disjunctions may
be removed leaving an expression entirely in ': and "A". Clearly, (-,v) or
(-./\) define complete sets of connectives. This implies that any expression
can be converted to conjunction or disjunction of clauses by using the
equivalent statements given in Table 3. It should be pointed out, however,
that in general, a number of conjunctive or disjunctive normal forms are
possible, leading to more than one representation for a particular compound
proposition. Using the method described above, the most computationally
efficient representation of a logical form is not necessarily achieved. The
authors therefore aim to provide a systematic reformulation procedure with
computer support that offers increased scope and applicability of mathematical
programming.

No Statement Equivalent Forms

1 -P P

2 P V Q (-PAQ) V (PA-Q) Exclusion

3 -(PvQ) -PA~Q De Morgan's Law

4 -(PAQ) (P-Q)) A (Q-.P)

5 P-.Q ~PvQ Implication

6 P-Q (P-Q) A (Q-P)
P - Q -PA-QVPAQ

7 P-.QAR (P-Q) A (P-R)

8 P-.QVR (P-.R) V (P--R)

9 PAQ-.R (P--R) V (Q-.R)

10 PVQ-.R (P-R) A (Q-.R)

11 PA(QVR) (PAQ) V (PAR) Distributive Law

12 IP,(QAR) (Pv/) A (PVR)

13 PAP\/Q P

TABLE 3: Transformation of Logical Statements
into Equivalent Forms

3.3 Logic Forms represented by 0-1 variables and Linear (In) equalities

We wish to transform a compound proposition into a system of linear
constraints so that the logical equivalence of the transformed expressions is
maintained. The resulting system of constraints clearly must have the same
truth table as the original statement, that is, the truth or falsity of the
statement is represented by the satisfaction or otherwise of the corresponding
set of linear equations and inequalities.

In order to explain the transformation process and the underlying principles
more clearly, two cases are distinguished, namely, connecting logical variables
and logically relating linear form constraints.

(i) Connecting logical variables

Let P. denote the -th logical variable which takes values T or F and represents
J . J.an atomic proposition describing an action, option or decision. Associate an

integer variable with each type of action (or option). This variable, known as
the binary decision variable, is denoted by "oj" and can take only the values 0
and 1 (binary). The connection of these variables to the propositions are
defined by the following relations:

6j = I iff proposition Pj is TRUE

6j = 0 iff proposition P is FALSE

Imposing various logical conditions linking these different actions in a model,
can be achieved by expressing these conditions in the form of linear
constraints connecting the associated decision variables.

Using the propositional connectives given in Table 1, and the equivalent
statements, given in Table 3, a list of standard form simple transformations
T1.1 ... T1.23 are defined. These transformations are applied to the atomic
proposition P. and the associated 0-1 variable 6. and using these
transformations compound propositions are restated in linear algebraic forms,
involving decision variables, so that the two expression are logically
equivalent.

VARIABLE TRANSFORMATIONS

Statement Constrain Transformation

~Pl 61 = 0 T1.1

P1 v P2 6l + 62 > 1 T1.2

P1 v P2 61 + 02 = 1 T1.3

P1 A P2 61 = 1, 62 = 1 T1.4

-(PI v P2) 61 = 0, 62 = 0 T1.5

-(P 1 A P2) 61 + 62< 1 T 1.6

PI -"-P 2 1 -62>61 T1.7

PI -'P2 61 -c12 < 0 TI.8

P1 -" P2 °L - 62 = 0 TI.9

PI -" P2 A P3 61 6- 2, 61 T1.10

P1-P 3(1 ! 62 +63 T1.1 I

PIAP 361 +62 -63 1E- T1.12

PI vP 2 .P 3 61 63, 62<! 63 T1.13

PI A(P 2 VP 3) 61 1, 62 +63 1 T1.14

. v (P2 A P3) 61 + 62> 1, 61 + 63 !!1 T1.15

The general forms of transformations TI1.2, TI1.3, T1.1 11, T1. 12, may be stated
as:

PI vP 2 v... Pn 61 +62..+ 6nl T1.16

.at least Kout of nare TRUE" 6 1 +62 .+ 6n > k T1.19

.exactly kout of n are TRUE" 6 + 62* + 6n =k T1.20

.at most kout of nare TRUE' 61 +62 ... 6 !,< k TI1.21

Pn -EP1 VP 2 V... ..+6>~= T 1.22

P P AP 2 A k -i 2~k n 1k, T1.23
(6j -6n 0O,ji= 1,..-, k)

(ii) Logically relating linear form constraints

In order to reformulate "logical constraints in the general form", it is well
known that finite upper or lower bounds on the linear form must be used
Simonnard [SIMNRD66], Brearly, Mitra et al [BRMTWL75], Williams
[WILLMS89].

Consider the linear restriction

n

LFk : >_' akj xj (p) bk

j= I

where p defines the type of mathematical relation, p ,>,=. Let Lk,
U i, denote the lower and upper bounds respectively, bn the c rresponding
linear form, that is

n

Lk <_ > akjXj-bk _ Uk

j=l

In our reformulation procedure, we use the finite bounds Lk and Uk . These
bounds may be given or, alternatively, can be computed for finite ranges of x.
[BRMTWL75]. A "Logical Constraint in the Implication Form" (LGIF) is a logical
combination of simple consraints and is defined as

If antecedent then consequent

where the antecedent is a logical variable and the consequent is a linear form
constraint.

A "logical constraint in the general form" can be always reduced to an LGIF using
well known transformations set out in Table 3. To model the LGIF, a 0-1 indicator
variable is linked to the antecedent. Whether the constraint LFk applies or
otherwise is indicated by a 0-1 variable 6'k ,

6'k = I iff the kth linear constraint applies

= 0 iff the kth linear constraint does not apply

A set of transformations T2 are defined below which illustrate this binary variable,
namely the indicator variable of the antecedent using the bound value relates to the
linear form restriction, that is the consequent.

CONSTRAINT TRANSFORMATIONS

Statement Constraint Transform

'k = - xk Lk xk Lk6'k T2.1

6'k = 0 Xi 0 xk <Uk'k T2.2

6'k - akj xj < bi > akj xk - bk < Uk(1-6'k) T2.3
j J

6'k= I - akj Xj bi akjxk-bk > L i (- 6'k) T2.4
J J

6'k1= I- akjXj=b i T2.3(Wk= I -. akjxk bk) T2.5

T2.4 k 1 -. akj xj _ bk)

4. A SYSTEMATIC PROCEDURE FOR REFORMULATION

Having represented in the previous sections, compound propositions as
(in)equalities, the next step is to model more complicated logical statements by
further inequalities. As a result of the many, but equivalent, forms any logical
statement can take, there are often different ways of generating the same or
equivalent mathematical reformulations.

One possible way would be to convert the desired expression into a normal form
such as the conjunction of disjunctive terms, the clauses. Each clause is then
transformed into a linear constraint (applying transformation Ti.16) so that the
resulting CNF can be represented by a system of constraints, derived in this
manner, which have to be satisfied invoking the logical "and" operation (an
illustration of this method is presented in Example 1).

In the absence of a systematic approach, the above process appears to be unduly
complicated. This has motivated the authors to propose a systematic procedure to
reformulate a logical condition imposed on a model into a set of integer linear
constraints. Such a procedure can be encapsulated by a sequence of progressive
steps whereby the simple propositions are used to build compound propositions
which are then combined further into more complicated statements. The way of
proceeding is to reduce such statements into standard forms by using equivalent
expressions and progressively transform them into mixed integer linear forms. The
procedure involves the use of 0-1 decision variables and indicator variables as
defined in the previous sections. Variable and constraint transformations are
applied to the decision or indicator variables or both as the logical specification of
the model requires. The conceptual build up of the model is illustrated by diagram
I and diagram 2.

Step 1 Write explicitly the required condition, in words, in the form of a logical
compound statement using known logical operators. Let S be the
statement of the required condition.

Step 2 Decompose the statement S into simple (atomic) propositions: define
these as atomic propositions Pj. Construct intermediate compound
propositions Qi using the atomic propositions Pj.

Step 3 Rewrite S in a symbolic form using the compound propositions Qi and
the connectives defined in Table 1. Simplify S into a normal form CNF

Step I Step 2

S S

Q1, Q2 . Q...

TI '
P1 ' P2 Pj

Step 3
S

.1

Propositions defining I

Constraints

T

QI'Q2'... Qi""*

T

Propositions P..
defining variables I "

S is fully stated in terms of Q1, Q2. Qi

Step 4
S

Propositions defining I R, 6, .6

Constraints

ro n Q2

Propositions. PI . I .

defining variables P1 P2 ..

Step 5
S

CNF/DN

Propositions defining , R2 . [Rk R, R
Constraintsk

______________________T1.1 I~inea ns

T I
Propositions P P 2 . .
defining variables 1.. 2 .. .

Step 6
S
I

I / [MIP
MOEEL

Propositions defining Ri 6, R '
Constraints

Linear

Constraints

T

Propositions
defining variables ___

or DNF using equivalent logical forms set out in Table 3. Identify the
compound propositions Rk stated in terms of Qi where Rk relate to the
constraints of the model.

Step 4 Define 0-1 decision variables 6. to represent the truth or falsity of each
atomic proposition Pj. Also define 0-1 indicator variables d'k for each
Rk which relate logically the different constraints of the problem.

Step 5 Transform each compound proposition Qi into a linear form
mathematical constraint using variable transformations (T 1.1, T 1.2 ...).

Step 6 Express the restrictions of the problem as LGIF's by linking the
indicator variables to the mathematical constraints. Depending on the
context, the decision variables can take the role of indicator variables.
Transform the logical constraints into mathematical (in)equalities
repeated applications of variable or constraint transformations. Compute
bounds on linear forms as required. When a straightforward application
of either transformation is not possible, it may be necessary to introduce
more indicator variables and use them to replace a complex constraint
by simpler ones.

5. ILLUSTRATIVE EXAMPLES

The following two examples are set out to illustrate the modelling of a logical
condition using the reformulation procedure.

5.1 Example 1 ([WILLMS87])

"If 3 or more of products (I to 5] are made, or less than 4 products (3 to 6, 8,
9) are made then at least 2 of products (7 to 9] must be made unless none of
products (5 to 7] are made".

Step 1

Let S denote the above statement of the problem.

Step 2

Define the atomic propositions Pj "Product j is made" (jd,J = {1,2, 9)).

Also define compound propositions

Q, : "at least 3 of P 1 ,P2 ,P3 ,P4 ,P5 are TRUE"

Q2 : "at most 3 of P 3 ,P4 ,P5 ,P6 ,P8 ,P9 are TRUE"

Q 3 : "at least 2 of P7,P8,P9 are TRUE"

Q 4 : "none of P5 ,P6 , or P7 is TRUE" i.e. "-(P5 v P v P7)"

Step 3

Write S in symbolic form: (Q 1 v Q2) A - Q3 "

In order to simplify S introduce compound propositions R1 and R2 ,

R1: Q1 vQ2

R 2 : -Q 4

Step 4

Define decision variables 6j for each proposition Pj such that

6j = 1 iff product j is made (Pj is TRUE), jJ

6j = 0 otherwise (Pj is FALSE)

Introduce indicator variables 6'1 and 6'2 such that

6= 1 iff proposition R1 (: Q 1vQ 2) is FALSE

= 0 iff proposition R1 is TRUE

J02 1 iff proposition R2 (: -Q 4) is FALSE

0 iff proposition R2 is TRUE

The logic of the definition of the indicator variables in this example has been
reversed in order to derive a formulation which is comparable to that given by
Williams.

Step 5

Apply variable transformations to propositions Qi (i = 1 ..., 4) in order to
convert them into linear constraints.

Using T1.19, proposition Q1 can be represented by

61 + 62 + 63 + 64 + 65 > 3

Using T 1.21, proposition Q 2 can be represented by

63 + 64 + 65 + 66 + 68 + 69 < 3

Using Ti .5, proposition Q4 can be represented by

65= 0,66 = 0, 67 = 0

Using Ti .19, proposition Q3 can be represented by

(7 + 68 + 69 > 2

Step 6

Relate logically the various constraints of the problem firstly by imposing the
following conditions (LGIF's) :

LGIF - 1 1 -. (Q 1 vQ 2)

LGIF - 2: 6 '2 =1 -, (-Q4)

LGIF - 3: (' 1 = 1 A '2 = 1) -. Q3

Convert the above conditions in equivalent forms.

LGIF - 1: '1 = 1 -- Q1 A - Q2 - De Morgan's Law

'1 = 1 - -Q

1'1 = - Q2

6'1 = 62 + 63 + 64 + 65 ! 2 (1 a)

1 = 1 -6(3 + 64 + 55 + 6 + + 9 _ 2 (1b)

LGIF - 2: 6,2 = I - Q4

602 = 1 - 65 = 0 A 67 = 0 (2)

LGIF-3: 6,'1 = I AN 2 = 1)- 7 +0 8 + 69 > 2 (3)

Convert into linear constraints using constraint or variable transformations.
Using T2.3, U may be taken as 3 (= 1+1+1+1+1- 2). This gives the
following constraint representation of LGIF - I a*

61 + 62+3 + 64 + 65 + 3 6 1 5 (5.1.1)

Using T2.4, L may be taken as -4 (= 0+0+0+0+0+0-4). This gives the
following constraint representation of LGIF - l b :

63 + 64 + 65 + 66 + 68 + 69 4 6'1 (5.1.2)

Using T 1. 10, we impose condition LGIF - 2 by the constraints

1 - 65 6'2 1 - 66 > 6'2 , 1 - 67 ! 6'2 (5.1.3)

To apply any constraint transformation on condition LGIF - 3, we need to

simplify further by introducing another indicator variable 6'3 such that

6'3 = 1 if (' = 0 A 6'2 = 0), that is, both propositions R1 and R2 are TRUE.

Condition LGIF - 3 is then replaced by the following two conditions

(6' 1 = 0A6'2 -0)-. 6 3 = 1 (3a)

6 3 =1 - 67 + 68 +69 > 2 (3b)

Using T 1.12, condition LGIF - 3a is represented by

6'1+6'2+6'3 1 (5.1.4)

and using condition T2.4 condition LGIF - 3b is represented by

6'7 + 6'8 + 6'9 3 6'3 (5.1.5)

The complete IP representation of the condition S is given by the set of
constraints (5.1.1) - (5.1.5):

61 + 62 + 63 + 64 + 65 + 3 6"1 > 5

63 + 64 + 65 + 66 + 68 + 69 4 6,1

1 - 65 > '2

1 - 66 > 6'2

1 - 67 > 6'2

6 1 + 6'2 + 6'3 > 1

67 + 68 + 69 2 6'3

6'1 , 6 '2 , 6'3 0,1)

5.2 Example 2: Crossword Compilation ([WILSON89])

This problem has a logical structure; it can be formulated in terms of Boolean
Algebra and then converted into an integer programming system of
constraints. The objective is to fill in an nxn full puzzle with complete
interlocking using words from a given lexicon.

Define the following sets

I the set of rows (i E I)

M the set of columns (m E M)

J the set of letters of the alphabet (j c J)

and let n = = I I I. Given also is a lexicon of n-letter words.

To formulate the problem, the following set of logical conditions have to be
modelled:

Cl. Each cell (i,m) of the matrix must be occupied by exactly one letter of
the alphabet.

C2. If cell (i,m) is occupied by letter j then at least (n-i) cells (i,m'), m'm
must be occupied by letters j'd1 (.J) and at least (n-i) cells (i',m), i'*i
must be occupied by letters j",E2 (j) where

Ji(J) : set of letters which by virtue of the lexicon could appear in
cells (i, m'), i'* m given that letter j appears in cell (i,m).

J20) : set of letters which by virtue of the lexicon could appear in
cells (i', m), i' * i given that letter j is in cell (i, m).

Conditions C1 and C2 are true for all cells (i, m), i=1, ..., n , m=l, ..., n
and jEJ.

To model the above logical conditions, we apply the procedure of section
4.

Step 2

Define the individual propositions

Pimj : "Cell (i, m) is occupied by letter j" for all iEI, mEM and jEj

Define compound propositions

Qlimj : "at least (n-I) of Pim'j' are TRUE for given m'*m, j'd1 (j)"

Q2imj : "at least (n-1) of Pi'm" are TRUE for given i', j"J 2(J)"

Step 3

Express conditions C1 and C2 in symbolic form:

C1 : Pim"A" 'x Pim"B" ' ... \ Pim"Z" for all id, mEM and jFl

C2 : Pimj-.QimjAQ 2imj for all id, mcM and jd

Using 3.7 of Table 3, C2 is equivalent to the statement:

(Pimj-,Qlimj) A (Pimj- Q2imj).

Step 4

Define decision variables 6imj for each proposition Pimj such that

'5imj = 1 if letter j is placed in cell (i, m)

= 0 otherwise

Step 5

Apply variable transformations to propositions Qlim j and Q2M j to
obtain the following linear constraints

Using T1.19, Q'imj can be represented by

Fm 6ira j _ n-1 for given i, j, m

and Q2 imj can be represented by

FJ i'mj" > n-I for given i, j, mi' :*ij" IJ2(0)

Step 6

Using transformation TI.3, condition CI can be represented by

E imj = 1 for all i= 1 ... , n and m= 1, ... , n (5.2.1)
jeJ

C2 can be replaced by the following logical constraints:

,dimj= 1-I JU Fim~j' > n-I for all i,jm (5.2.2)

imj=l - IF 6i'mj, > n-I for all ij,m (5.2.3)
i'*1i,j"eJ2 (J)

(5.2.2) and (5.2.3) can be converted into the following inequalities by
applying transformation T2.4 where the lower bound is taken as -(n-1):

m 6im'j' > (n-l)5imj for all ij,m (5.2.4)
m'*mj'EI (j)

E 6i'mj, > (n-1) 6imj for all ij,m (5.2.5)
i' ij"J2(j)

This leads to the complete formulation of the problem set out below:

E Oimj= 1 for all i= 1 ... , n and m= 1 ..., n

jeJ

"imj > (n-1)6imj for all ij,m
m'*:m j',E 10()

, j U i'mj" > (n-1)6imj for all i,j,m
i'ij"Ej2(0)

6imj E (0,11 v i,=l, ..., n, m=l, ..., n and jEJ

6. IMPLEMENTATION WITHIN AN LP MODELLING SYSTEM

Systems and languages for specifying LP and IP models are well established as
practical tools for constructing optimisation applications. Fourer [FOURER83]
provided an excellent summary of the state of the art at the beginning of the 80's
and an update of this information can be found in the two special issues
[MITRAG89] on this topic. We intend to incorporate the reformulation method
described in this paper into CAMPS which is an interactive modelling system
[LUCMIT88]. The design objectives of this modelling system are broad: the
system is set out to help non-expert LP users to come to grips with the task of
conceptualising and describing LP models, whereas the expert LP user is also
supported in his requirements to construct large and complex LP models. We are
not aware of any MP modelling system which provides reformulation support as
described in this paper.

Consider the main menu, the modelling menu (MODEL), and the information flow
diagram of CAMPS as set out in Diagrams 3, 4 and 5. The option
REFORMULATION in Diagram 5 is introduced to encapsulate the automatic
transformations and constraint generation described in this paper. The
REFORMULATION menu in the prototype form is shown in Diagram 6.

1. MODEL 1. NAMES

2. GENERATE 2. DIMENSIONS

3. OPTIMISE 3. TABLES

4. REPORT 4. VARIABLES

5. UTILITIES 5. CONSTRAINTS

6. LOGOUT 6. REFORMULATION

7. RETURN

DIAGRAM 3 DIAGRAM 5

IA GM RO AR UT

MO):.GENLRAII-l OPI1IMISE REPORT UTILITIELS

NAMES INTERNAL PREPARE VARLABLES LIST

DIMENSIONS EXTERNAL RUN ROWS RENAME
TABLES MODF1, SUMMARY DELETE
VARIABLES PROGRAM PRINT

RHIORMtI.- INTERFACE DOCUMENT
A ION DEBUG

CONS I LINFS

Hierarchical relationship of main menu options
and

information flow through the five master files
as effected by the subsystem

IA GM GM AR RO UT AR UT

UT itAR UT R() UT i AR
TI TI TI T IT t

MODEL Ai.sNALYSE MIEMOI)!-I. MOI .-I
1)ATA AIND DOCUMENT-I)A A SOtIUTION

F)RMAIl REPORT ATION

DIAGRAM 4

REFORMULATION

1. STATEMENT

2. DIMENSIONS

3. PROPOSITIONS

4. IP - VARIABLES

5. EQUIVALENT FORMS

6. TRANSFORMATIONS

7. BOUNDS

8. RETURN

Diagram 6.

STATEMENT simply records a compact textual natural language statement of the
problem against the global model statement S.

Since REFORMULATION is a submenu of MODEL all the existing attributes of a
given model such as DIMENSIONS, VARIABLES and CONSTRAINTS defined in
the model are inherited. The DIMENSION option is therefore a continuation of
DIMENSION in the parent menu. Under PROPOSITIONS, P. Qi, and Rk (see last
two sections) are defined in that order. As in main CAMPS approach where
arithmetic operators are prompted here logical oprators are prompted and chosen to
define the LOGICAL Forms. The full statements of the propositions are also
entered here and used later for the purpose of documentation.

IP-VARIABLES option is used to define the 6i, '5k, decision and variables.
EQUIVALENT FORMS and TRANSFORMATIONS simply display the
irformation in Table 3 and the list of transformations Ti .1 ...T 1.18, respectively.
They also allow these to be chosen for the reformulation procedure. In relating
constraints logically to each other it may be necessary to compute bounds on the
linear forms. Such bounds can be derived by invoking the BOUNDS option. A full
system specification for implementation of the reformulation support is given in
[MT...90]. This report also contains examples of dialogue for the illustrative
problems.

7. DISCUSSION AND CONCLUSIONS

In this paper we have first reviewed the relationship between logical forms, the
methods of computing inferences either symbolically or quantitatively and the
discrete programming methods. The important connectives with Al and logic
programming have also been reviewed. A systematic procedure for reformulating
logic forms to IP and MIP forms is described and illustrated by two representative
examples. A blue print for integrating this automatic procedure within an iteractive
modelling system is then put forward. Constraint logic programming uses simple
unsophisticated algorithms for constraint satisfaction. In contrast computational
mathematical programming is concerned with efficient algorithms exploiting
problem structure and has many instances of success in large and complex
applications. The ideas put forward here add to the conceptual foundations of
intelligent modelling systems for Mathematical Programming. We also hope the
research reported in this paper will provide motivation to bring the work of CLP
and MP communities closer together.

8. REFERENCES

ALLENJ83] Allen, J. F., 1983, "Maintaining knowledge about temporal
intervals", Comm. ACM., 26.
[BCHNKM89] Brown, R. G., Chinneck, J. W. and Karam, G. M., 1989,
"Optimization with constraint programming systems", Impact of Recent Advances
in Computing Science on Operations Research, R Sharda et al editors, North
Holland, 463-473.
[BEAUMN87] Beaumont, N., 1987, "An algorithm for disjunctive orograms",
Monash University, Victoria 3168, Australia.
[BERGHZ87] Berghel, H., 1987, "Crossword compilation with horn clauses", The
Computer Journal, 30, 183-188.
[BNPRLG88] Bell Northern Research, 1988, Prolog Language Description,
Version 1.0, 0 Hawa, Canada.
[BRMTWL75] Blair, C. E., Jeroslow, R. G., Lowe, J. K., 1988, "Some results and
experiments in programming techniques for propositional logic", Computers and
Operations Research, 13, (5), 633-645.
[BREAR75] Brearley, A. L., Mitra, G., Williams, H. P., 1975, "Analysis of
mathematical programming problems prior to applying the simplex algorithm",
Mathematical Programming, 8, 54-83.
[BSHORT84] Buchanan, B. G. and Shortliffe, E. H., 1984, "Rule based expert
systems: the MYCIN experiments of the heuristic programming project,
Addison-Wesley, Reading, Mass., USA.
[CHINBK89] Chinneck, J. W., Brown, R. C., Karam, C. M., 1989, "Optimisation
with constraint programming systems", Proceedings of "Impact of Recent Advances
in Computer Science on Operations Research", Williamsburg.
[COLMRA87] Colmerauer, A., 1987, "Opening the PROLOG III Universe", Byte
Magazine, August 1987.
[DOWGLR84] Dowling, W. F. and Gallier, J. H., 1984, "Linear time algorithms
for testing satisfiability and horn forumlae, Journal of Logic Programming, 3,
267-284.
[GARDNR61] Gardener, M., 1961, "More mathematical puzzles and diversions",
Penguin Books.
[HNRYCK89] Hentenryck, P. V., 1989, "Constraint satisfaction in logic
Programming", MIT Press, Massachusetts, USA.
[HOOKER88] Hooker, J. N., 1988, "A quantitative approach to logical inference",
Decision Support Systems, 4, 45-69.
[HOOK ?] Hooker, J. N., ?, "Resolution versus cutting plane solution of
inference problems: some computational experience", Operations Research Letters ?
[JERSLW85] Jeroslow, R., 1985, "An extension of mixed integer programming
models and techniques to some database and artificial intelligence settings",
Working Paper, Georgia Institute of Technology, Atlanta, California.
[JERWAN87] Jeroslow, R. G., Wang, J., 1987, "Solving propositional
satisfiability problems", working paper, Georgia Institute of Technology, Atlanta,
CA.
[JERWAN89] Jeroslow, R., Wang, J., 1989, "Programming integer polyhedra and
horn clause knowledge bases", ORSA Journal on Computing, 1, (1), 7-19.
[LARIER78] Lauriere, J. L., 1978, "A language and a program for stating and
solving combinatorial problems", Artificial Intelligence, 10, 29-127.
[LASSZC87] Lassez, C., 1987, "Constraint logic programming", Byte Magazine,
August 1987, 171-176.
[LAUR76] Lauriere, 1976
[LUCMIT88] Lucas, C. and Mitra, G., 1988, "Computer-assisted mathematical
programming (modellingO system: CAMPS", The Computer Journal, 31, 4, 1988.
[MITRA87] Mitra, G., 1989, ?? IMA Journal of Mathematics in
Management, Oxford University Press.
[POST ? I Post, S., ? , "Reasoning with incomplete and uncertain knowledge as an
integer linear program", Planning Research Corporation, Virginia 22102.
ehgmrefs

[QUINEW55] Quine, W. V., 1955, "Away to somplify truth functions", American
Mathematical Monthly, 62, 627-631.
[REGNWN83] Reggia, J. A., Nau, D. S. and Wang, P. Y., 1983, "Diagnostic
expert systems based on a set covering model", Int. Jour. Man-Machine Studies, 19,
437-460.
[ROBINS65] Robinson, J.A., 1965 "A mchine oriented logic basic on the
resolution principle", Journal of the ACM, 12, 23-41.
[ROEHR88] Roehrig, S. F., 1988, "A pivoting approach to the solution of
inference problems", US Coast Guard R&D Center, Croton CT, 06340.
[SIMNRD661 Simmonard, M., 1966, Linear Programming, Prentice Hall.
[STEEL] Steel, S., 1987, "Tutorial notes", AISB Tutorial.
[WILLMS77] Williams, H. P., 1977, "Logical problems and integer
programming", Bulletin of the Institute of Mathematics and its Applications", 13,
18-20.
[WILLMS85] Williams, H. P., 1985, "Model building in mathematical
Programming", Wiley, New York.
[WILLMS87] Williams, H. P., 1987, "Linear and integer programming applied to
the propositional calculus", International Journal of Systems Resarch and
Information Science, 2, 8 1-100.
[WILLMS 89] Williams, H. P., 1989, "Constructing integer programming models
fby the predicate calculus", Annals of Operations Research, ?
[WILSON89] Wilson, J. M., 1989, "Crossword compilation using integer
programming", The Computer Journal, 32, (3), 273-275.
[YAGERR85] Yager, R. R., 1985, "Explanatory models in expert systems", Int.
Jour. Man-Machine Studies, 23, 539-549.

ehgmrefs

